Challenges in Antibiotic Product Development in a Rapidly Changing Global Landscape

Scott A Brown, DVM, PhD, DACVCP
Senior Director, Metabolism & Safety
Pfizer Animal Health
scott.a.brown@pfizer.com
Antibiotic Resistance in Zoonotic Bacteria

- Salmonella
- E. coli
- Campylobacter
- Enterococcus

Animal pathogenic bacteria that are targeted by the antibiotic are not the issue
The Challenge

Preserve the efficacy of currently available antimicrobials for use in people and animals.
The challenge

- Strong agreement among experts for balancing “one” global health; the question is:

 How can we preserve the efficacy of currently available antimicrobials for use in people and animals?
Basic comments about antibiotic resistance...

- All antibiotics select for resistance...you look for it in isolation, you can find it

- Antibiotics used in animal health are just like all antibiotics

- Antibiotic resistance poses a risk to human and animal health

- There are many factors that contribute to the emergence and dissemination of antibiotic resistance
 - No one can quantify the “attributable risk” for any one of the complex array of factors that can contribute to ABr
Veterinary Antimicrobials

THE MARKET
Animal Health Industry 2010

Sales (+7.8% nominal growth, +4.0% real growth)

IFAH website, 2011
Animal Health Industry 2010

Sales (+7.8% nominal growth, +4.0% real growth)
Release Assessment
Determines probability that resistant bacteria will be present in animals as a result of the antimicrobial use.

Exposure Assessment
Gauges the likelihood that humans would ingest the resistant bacteria.

Consequence Assessment
Assesses the chances that human exposure to the resistant bacteria would result in adverse human health consequences.

Overall Risk Estimation (high, medium or low)

FDA DENIAL of product approval and use

FDA APPROVAL UNDER SPECIFIC USE CONDITIONS BASED ON ANTIBIOTIC CLASS, e.g.:
- Prescription only • No extra-label use
- No “prevention” use • No whole herd/flock use
- Limits on duration of use
- Limits on method of administration
- Veterinary Medicine Advisory Committee review
Precautionary Principle

- Defined in European legislation:
 - The precautionary principle may be invoked where urgent measures are needed in the face of a possible danger to human, animal or plant health, or to protect the environment where scientific data do not permit a complete evaluation of the risk. It may not be used as a pretext for protectionist measures. This principle is applied mainly where there is a danger to public health. For example, it may be used to stop distribution or order withdrawal from the market of products likely to constitute a health hazard.

- A decision to take measures without waiting until all the necessary scientific knowledge is available
Bans on antibiotic growth promoters in feed

Korea: July 2011 (discontinued AB’s in feeds)

European Union, 2006

Switzerland, 1999

Denmark, 1998

Sweden, 1986
Government Actions
(withdrawal or limiting of approval)

- **US** – Baytril water soluble approval revoked by FDA in 2005
- **EU** - Label restrictions on use as first-line therapy (2011)
 - fluoroquinolones and cephalosporins
- **Netherlands (current) – (proposed)**
 - To ban all livestock use of beta-lactams, fluoroquinolones, macrolides, lincosaminides in livestock
 - To limit all new antimicrobials to human use
 - To eliminate all in-feed use of antimicrobials
- **US – PAMTA (proposed)**
 - Eliminates AGP, prevention and control claims for premix and water soluble products with critical antimicrobial animal drugs – unless Health and Human Services Secretary determines safety
 - Defines “critical antimicrobial animal drug” as one that is: “(1) intended for use in food-producing animals; and (2) is composed wholly or partly of—(A) any kind of penicillin, tetracycline, macrolide, lincosamide, streptogramin, aminoglycoside, or sulfonamide; or (B) any other drug or derivative of a drug that is used in humans or intended for use in humans to treat or prevent disease or infection caused by microorganisms.”
- **US – Extra-label Drug Use restrictions/prohibitions (proposed)**
- **US – Elimination of growth promotion indications for medically important ABs (proposed)**
EU likely to expand focus

- Incoming EU president from Denmark, 2012
- Antibiotic resistance a priority
- Interest in a common EU surveillance program for antibiotic consumption and antimicrobial resistance
- Goal to reduce antibiotic consumption among both humans and animals with focus on the critically important antibiotics
- Potential incentives for R&D to expand available options
Other Market Limiting Factors

- A preference for holding new products “in reserve” in the expectation that they will not be overused and subsequently lose their effectiveness due to resistance emergence
- Formularies that serve to direct veterinarians in which products to use or avoid; based in part on human importance ranking lists
Antimicrobials Marketplace...
Where is it going?

Current Market
ELDU Restrictions
EU Bans
Other?
Veterinary Antimicrobials

THE REGULATORY PROCESS
Veterinary Drug Discovery

- 10+ years and $100 million investment
 - Quality, safety (human and animal) and effectiveness
- Global animal health anti-infectives market
 - Approximately $3 billion dollars in 2008
- Industry consolidation means less internal antibiotic expertise available, similar to human pharma
 - Most current "new vet antibiotics" discovered in 1980s
 - Most came from Human Discovery programs
 - Now seeking external opportunities
- Internal business competition of antibiotic opportunities vs. non-antibiotic candidates
 - Return on investment for shareholders
 - Probability of technical and regulatory success
 - External stakeholder issues
Large US and European Pharmaceutical Companies Conducting Antibacterial Research

<table>
<thead>
<tr>
<th>1980 (N=36)</th>
<th>1998 (N=20)</th>
<th>2010 (N=3 to 7)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>Abbott</td>
<td>AstraZeneca</td>
</tr>
<tr>
<td>Astra</td>
<td>Astra</td>
<td>Novartis</td>
</tr>
<tr>
<td>Ayerst</td>
<td>Bayer</td>
<td>(Glaxo SmithKline)</td>
</tr>
<tr>
<td>Bayer</td>
<td>Bristol-Myers Squibb</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Beecham</td>
<td>Glaxo Wellcome</td>
<td>Pharmacia & Upjohn</td>
</tr>
<tr>
<td>Bristol-Myers</td>
<td>Rorer</td>
<td>Rhone-Poulenc Rorer</td>
</tr>
<tr>
<td>Burroughs</td>
<td>Roche</td>
<td>Roche</td>
</tr>
<tr>
<td>Ciba-Geigy</td>
<td>Roussel</td>
<td>Hoechst Marion Roussel</td>
</tr>
<tr>
<td>Dow</td>
<td>Sandoz</td>
<td>Schering</td>
</tr>
<tr>
<td>DuPont</td>
<td>Sanofi</td>
<td>Sanofi</td>
</tr>
<tr>
<td>Glaxo</td>
<td>Schering</td>
<td>Lilly</td>
</tr>
<tr>
<td>Hoechst</td>
<td>SmithKline</td>
<td>Johnson & Johnson</td>
</tr>
<tr>
<td>ICI</td>
<td>Squibb</td>
<td>Lilly</td>
</tr>
<tr>
<td>Lederle</td>
<td>Upjohn</td>
<td>Merck</td>
</tr>
<tr>
<td>Lilly</td>
<td>Warner-Lambert</td>
<td>Merck</td>
</tr>
<tr>
<td>Marion</td>
<td>Wellcome</td>
<td>Merck-Schering Plough</td>
</tr>
<tr>
<td>Merck</td>
<td>Wyeth</td>
<td></td>
</tr>
<tr>
<td>Merrell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*() = diminished effort

Slide courtesy KA Bush, Indiana University
Since 2004... Tylvalosin, gamithromycin, tildipirosin

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Class</th>
<th>Drug sponsor</th>
<th>Year of approval</th>
<th>Species</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin</td>
<td>Fluoroquinolone</td>
<td>Bayer</td>
<td>1987</td>
<td>Cattle, poultry, pets</td>
<td>Respiratory disease</td>
</tr>
<tr>
<td>Ceftiofur</td>
<td>Third-generation cephalosporin</td>
<td>Pfizer</td>
<td>1988</td>
<td>Cattle, swine</td>
<td>Respiratory disease</td>
</tr>
<tr>
<td>Tilmicosin</td>
<td>Macrolide</td>
<td>Elanco</td>
<td>1990</td>
<td>Cattle</td>
<td>Respiratory disease</td>
</tr>
<tr>
<td>Florfenicol</td>
<td>Phenicol</td>
<td>Schering–Plough</td>
<td>1991</td>
<td>Cattle, swine, aquaculture</td>
<td>Respiratory disease</td>
</tr>
<tr>
<td>Danofloxacin</td>
<td>Fluoroquinolone</td>
<td>Pfizer</td>
<td>1991</td>
<td>Cattle</td>
<td>Respiratory disease</td>
</tr>
<tr>
<td>Cefquinome</td>
<td>Fourth-generation cephalosporin</td>
<td>Intervet</td>
<td>1995</td>
<td>Cattle</td>
<td>Respiratory disease</td>
</tr>
<tr>
<td>Marbofloxacin</td>
<td>Fluoroquinolone</td>
<td>Vetoquinol</td>
<td>1995</td>
<td>Dogs, cats, cattle</td>
<td>Skin, urinary and respiratory disease</td>
</tr>
<tr>
<td>Orbifloxacin</td>
<td>Fluoroquinolone</td>
<td>Schering–Plough</td>
<td>1997</td>
<td>Dogs, cats</td>
<td>Skin and urinary disease</td>
</tr>
<tr>
<td>Difloxacin</td>
<td>Fluoroquinolone</td>
<td>Fort Dodge</td>
<td>1998</td>
<td>Dogs, chickens</td>
<td>Skin and respiratory disease</td>
</tr>
<tr>
<td>Valnemulin</td>
<td>Pleuromutilin</td>
<td>Novartis</td>
<td>1998</td>
<td>Swine</td>
<td>Respiratory disease</td>
</tr>
<tr>
<td>Ibalofloxacin</td>
<td>Fluoroquinolone</td>
<td>Intervet</td>
<td>2000</td>
<td>Dogs</td>
<td>Skin and urinary disease</td>
</tr>
<tr>
<td>Tulathromycin</td>
<td>Macrolide</td>
<td>Pfizer</td>
<td>2003</td>
<td>Cattle, swine</td>
<td>Respiratory disease</td>
</tr>
</tbody>
</table>
Major Classes of Antimicrobials (shared human use classes)

<table>
<thead>
<tr>
<th>Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td>Penicillin, amoxicillin; ceftiofur</td>
</tr>
<tr>
<td>Macrolides & lincosamides</td>
<td>Tylosin; tilmicosin; tulathromycin, lincomycin</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin; neomycin</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Enrofloxacin, danofloxacin</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline; oxytetracycline, chortetracycline</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Various</td>
</tr>
<tr>
<td>Streptogramins</td>
<td>Virginiamycin</td>
</tr>
<tr>
<td>Polypeptides</td>
<td>Bacitracin</td>
</tr>
<tr>
<td>Phenicols</td>
<td>Florfenicol</td>
</tr>
<tr>
<td>Pleuromutilin</td>
<td>Tiamulin</td>
</tr>
</tbody>
</table>
Why people & animals share antibiotic classes

- Pathogens are similar in people and animals
- R&D-driven for humans; animals secondary (yet important) beneficiaries

<table>
<thead>
<tr>
<th>Potential risks cited for “sharing”</th>
<th>Potential risks cited for not “sharing”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance development, with human health implications</td>
<td>Animal mortality</td>
</tr>
<tr>
<td>Residues in meat/milk from improper use</td>
<td>Disease outbreaks, with animal and human health risks</td>
</tr>
<tr>
<td></td>
<td>Illegal and off-label use</td>
</tr>
</tbody>
</table>
2.2 The WHO list of critically important antimicrobials

The WHO list of critically important antimicrobials was based on the following criteria for categorization as developed by two Expert Meetings (WHO, 2005; WHO, 2007):

- **Criterion 1** Sole therapy or one of few alternatives to treat serious human disease.
- **Criterion 2** Antibacterial used to treat diseases caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources.

The definitions of the different categories were as follows:

- *Critically important* antimicrobials are those that meet criteria 1 and 2
- *Highly important* antimicrobials are those that meet criteria 1 or 2
- *Important antimicrobials* are those that meet neither criteria 1 nor 2
Table 4. Comparison of the human clinically important antimicrobials and veterinary clinically important antimicrobials lists

<table>
<thead>
<tr>
<th>Critically important antimicrobials used in human medicine</th>
<th>Veterinary critically important antimicrobials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Aminoglycosides</td>
</tr>
<tr>
<td>Cephalosporins (3rd and 4th generation)</td>
<td>Cephalosporins</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Macrolides</td>
</tr>
<tr>
<td>Penicillins (natural, aminopenicillins and antipseudomonal)</td>
<td>Penicillins</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Quinolones</td>
</tr>
<tr>
<td>Tetracyclines (only tigecycline)</td>
<td>Tetracyclines</td>
</tr>
<tr>
<td>Ansamycins</td>
<td></td>
</tr>
<tr>
<td>Carbapenems</td>
<td></td>
</tr>
<tr>
<td>Glycopeptides</td>
<td></td>
</tr>
<tr>
<td>Oxazolidinones</td>
<td></td>
</tr>
<tr>
<td>Streptogramins</td>
<td></td>
</tr>
<tr>
<td>Drugs used solely to treat tuberculosis or other mycobacterial diseases</td>
<td>Phenicols, Sulfonamides</td>
</tr>
</tbody>
</table>
Discovery, Approval and Post Approval

Scientific Discovery → 1/20,000 discoveries are successful

Preliminary Trials → Bacterial tests, chemical screens

Pre-Clinical Trials → Acute, chronic toxicity studies, dose ranging

Clinical Trials → Controlled field trials, residue studies

Regulatory Review → FDA’s CVM

Product Approval → FR pub.

Monitoring → Adverse reactions

7-10 Years ~$100 Million
What Might a New Antibiotic Look Like?

- Non-human antimicrobial class (or unique analog) is preferred to avoid cross-resistance with human use
 - Low potential for later development for human use
- Narrow spectrum agent vs. broad spectrum
- A bactericidal mechanism is preferred to a bacteriostatic mechanism to minimize co-resistance and cross-resistance selection
- Parenteral route of administration is preferred when possible, oral (water and feed) medications are acceptable for group treatment when injectable products are not feasible (e.g., poultry or swine)
- Appropriate label directions to guide end-user in use of the product to ensure minimal (or no) food borne bacteria resistance selection
Other Features to Support New Products...

- The need for antimicrobial susceptibility testing methods and clinical breakpoints to enable laboratory testing results to guide the selection of an appropriate product by a vet
 - CLSI clinical breakpoints

- Adequate diagnostic methods to ensure that the clinical disease is associated with a pathogen that could be treated with an antimicrobial agent for targeted therapy (e.g. it is a bacterial and not a viral infection)
 - “Quick tests” done on-site vs. traditional laboratory tests

- Off-label use restrictions
Veterinary Antimicrobials

THE CONSEQUENCES
The Product Development Dilemma

Cost and time of antibiotic product development

Size of the antimicrobials markets as bans and restrictions are implemented
Consequences of Restrictions and Prohibitions

Intended Consequences?
- Precious antibiotics saved for use in humans only
- Alleged reduction in selective pressure for medically important antibiotics
- Alleged reduction in selective pressure for MDR plasmids and pathogens

Unintended consequences?
- Widespread off-label and/or illegal use
- Intense use of a very few classes of antibiotics
- Major animal diseases left untreated or untreatable
- Increase in animal morbidity and mortality
- Human health/food safety jeopardized
- Reduced incentive to develop new antimicrobials
Competing Innovation for the Future

- Novel non-antibiotic interventions...
 - Immunomodulatory compounds
 - Phage therapy or carcass treatment
 - Non-antibiotic performance products
 - Microorganism-based products (probiotics)
 - Nutraceuticals
 - Vaccines (live, attenuated, killed, subunit)
 - Virulence or quorum blockers
 - Disease-resistant animal breeds
 - Other approaches?
Incentives for New Antibiotics for Human Use

- Extended patent life or regulatory exclusivity
- Research credit for antibiotic investment
- Public-Private partnerships
- Pricing considerations to fund new research

- Will or should these incentives include animal use antibiotics?
Wouldn’t it also be great if...

- One Health Initiative was considered
 - A movement to forge co-equal, all inclusive collaborations between physicians, veterinarians, and other scientific-health related disciplines

- Researchers who discovered novel anti-infective compounds also considered the potential for animal health product development?

- Collaborations to find the best ways to use antibiotics were fostered between the medical and veterinary sectors?
Summary

- Antibiotics are the only product category where increase use theoretically promotes more rapid obsolescence.
- The changing global landscape of antibiotic use restrictions has undermined the value of new product development.
- The speed of change of the regulatory and political landscapes is faster than product development can move.
- The results of these actions will reduce the ability of veterinarians to treat and control animal diseases over the next 10-15 years.
Challenges in Antibiotic Product Development in a Rapidly Changing Global Landscape

QUESTIONS?