Antibiotic Use in Food Animals –
A Dialogue for a Common Purpose

H. Scott Hurd DVM, PhD
Department of Production Animal Medicine
Director of World Health Organization Collaborating Center for Risk Analysis and Hazard Surveillance and Intervention in Food Animals
Former Deputy Undersecretary for Food Safety, USDA
Ames IA 50011, 515-231-3720
shurd@iastate.edu

National Institute for Animal Agriculture, Chicago IL, October 26, 2011
Objectives of this Meeting

• Dialogue
 – Where is consensus?
 – Where is science-based (dis)agreement?
 – Where is value-based (dis)agreement?

• Actions
 – Establish working committee
 – Identify and fill information and research (science) gaps
 – Establish criterion for decision making
When science CANNOT help us make a decision

• When values play a large role in the possible choice
• When there only a limited number of choices
• When there is little uncertainty re: probability of some outcomes

Honest Broker, R.A Pielke, Cambridge Press
Possible Value Based Questions

• Is modern farming acceptable?
• Who should benefit and how much?
• How much suffering to animals should be permitted?
• How much vet oversight is “enough”?
• What is “over” or “unacceptable” use?
• What is acceptable risk?
My Points

• 1. Concern (hazard) about antimicrobial resistant bacteria is not equivalent to risk.
• 2. Risk requires a connect causal pathway with case-by-case analysis
• 3. Alternative risk of sub-optimal animal health may be higher than the risk of on-farm antibiotic use.
Antimicrobial resistant bacteria are a potential Hazard

- AMR found many places:
 - Farms – conventional and organic
 - Ground water, deep ocean trenches
 - Artic and sub-artic seals
 - Wild boars, Baboons
 - 30,000 year old permafrost
 - “..places which are relatively untouched by human civilization ….” (Roberts, March.2011)
Hazard Does Not Mean Risk

\[\text{Hazard} \times \text{Dose (Exposure)} = \text{Risk} \]

Hazard \hspace{1cm} \times \hspace{1cm} \text{Dose} \hspace{1cm} = \hspace{1cm} \text{Drowning}
Hazard Does Not Mean Risk

\[\text{Hazard} \times \text{Dose (Exposure)} = \text{Risk} \]

Hazard

\[\times \]

= Corrosive injury
Example Hazardous Material

• Human Health Effects
 – cramps
 – nausea
 – dizziness
 – respiratory difficulties
 – convulsions capable of leading to death
Example Hazardous Material = Oxygen

- Human Health Effects
 - cramps
 - nausea
 - dizziness
 - respiratory difficulties
 - convulsions capable of leading to death

Material Safety Data Sheet: Oxygen

Product Name: Oxygen
CAS: 7782-44-7

Oxygen; Oxygen, compressed (D.O.T.)
DOT I.D No.: UN 1072

Chemical Name and Synonyms:
Oxygen

Formula: O_2
Chemical Family: Oxidizer

HEALTH HAZARD DATA

Time Weighted Average Exposure Limit:
None established (ACGIH 1994-1995). Oxygen is the “vital element” in the atmosphere in which we live and breathe.

Symptoms of Exposure:
Breathing high concentrations (greater than 75 molar percent) causes symptoms of hyperoxia which includes cramps, nausea, dizziness, hypothermia, ambylopia, respiratory difficulties, bradycardia, fainting spells, and convulsions capable of leading to death. For additional information on hyperoxia, see Compressed Gas Association’s Pamphlet P-14.

Toxicological Properties:
- The property is that hyperoxia which leads to pneumonia. Concentrations between 25 and 75 molar percent present a risk of inflammation of organic matter in the body.
- Oxygen is not listed in the LARC, NTP or by OSHA as a carcinogen or potential carcinogen.
- Persons in ill health where such illness would be aggravated by exposure to oxygen should not be allowed to work with or handle this product.

Recommended First Aid Treatment:
Prompt medical attention is mandatory in all cases of overexposure to oxygen. Rescue personnel should be cognizant of extreme fire hazard associated with oxygen-rich atmosphere.
Hazardous Material: Oxygen

The Poison is in the Dose

Diagram showing the relationship between the amount of oxygen available and the risk of harm or death.
Concern to Infectious Disease Society

- **Staphylococcus infections (MRSA)** – mainly hospital nosocomial infections, occasionally associated with schools and athletic facilities. CDC said “not a foodborne infection and cannot be acquired by eating meat. “
- **Acinetobacter baumannii** is an opportunistic pathogen associated with a high rate of infections in soldiers wounded in Iraq.
- **Vancomycin Resistant Enterococcus (VRE)** hospital nosocomial infection due to extensive use of vancomycin in U.S. hospitals. Vancomycin or drugs in its class have never been approved for or used in food producing animals.
- **Pseudomonas aeruginosa** is another opportunistic pathogen found in intensive care units, occurs rarely in dairy mastitis
- **Streptococcus pneumoniae** is strictly a human pathogen that causes respiratory infections. no known connection to food producing or companion animals.
- **Neisseria gonorrhea** strictly a human pathogen that causes venereal infections transmitted through human sexual contact.
- **Drug resistant tuberculosis and Klebsiella species** are other bacteria ..no known connection between these pathogens and food producing animals.
HAZARD creates CONCERN

CONCERN ≠ RISK

“Probabilistic risk assessment should be used to reduce unnecessary conservatism associated with current regulatory requirements …” (NRC, 1995)

Antibiotic resistant bacteria = Potential HAZARD

Risk assessment is needed to see if the causal pathway required does pose a RISK.
Risk assessment estimates “Probability that:...

• 1) resistant bacteria are present in the target animal as a result of drug use
• AND
 2) humans to ingest bacteria in question from the relevant food commodity
• AND
 3) human exposure to resistant bacteria results in an adverse health consequence” (FDA Guidance 152).
Without a causal pathway, you have NO risk.
Risk assessment must be implemented on case (bug) by case (drug) basis

- *Campylobacter* & macrolides
- *Campylobacter* & fluoroquinolone
- *Salmonella* & macrolides
- Animal *Enterococci* do not colonize humans
2. Low risk of antibiotic use in livestock

RzD = resistance genetic determinate
Bug = bacteria in question
Risk = human health harm

Undesirable Event = Risk
Release Assessment: Describes the probability that factors related to the antimicrobial use in animals will result in the emergence of resistant bacteria or resistance determinates (RzD).

Exposure Assessment: Describes the likelihood of human exposure to the RzD through particular exposure pathways.

Consequence Assessment: Describes the relationship between specified exposures to the RzD (the hazardous agent) and the consequences of those exposures (CVM-defined hazard)

Risk = 1 in 10 million per year
2. Risk Assessments have shown

<table>
<thead>
<tr>
<th>Antimicrobial evaluated (target bacteria) on-farm use</th>
<th>Quantitative Risk</th>
<th>Comments, (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin (Campylobacter) use in poultry to treat disease</td>
<td>1 in 30,000 of compromised treatment</td>
<td>Risk was termed as “low” by FDA. Methods overestimated attributable fraction and resulting risk (FDA 2001)</td>
</tr>
<tr>
<td>Enrofloxacin and macrolide (Campylobacter) use in poultry to treat disease</td>
<td>Removal is more hazardous to health than continued use</td>
<td>(Cox and Popken 2006)</td>
</tr>
<tr>
<td>All macrolide (Campylobacter) uses for production purposes, prevention, and treatment in cattle, swine, poultry</td>
<td>1 in 10 million of compromised treatment</td>
<td>(Hurd et al. 2004)</td>
</tr>
<tr>
<td>All macrolide (Campylobacter) uses for production purposes, prevention, and treatment in cattle, swine, poultry in Denmark</td>
<td>7 cases of resistant campylobacteriosis in Denmark per year</td>
<td>Most risk would come from imported product (Alban et al. 2008)</td>
</tr>
<tr>
<td>Macrolide (Campylobacter coli) use in swine</td>
<td>1 in 82 million</td>
<td>Stochastic model shows impact of uncertainty and variability in data (Hurd and Malladi 2008)</td>
</tr>
<tr>
<td>Streptogramin/Virginiamycin (Enterococcus faecium)</td>
<td>~100 in 100 million of impaired treatment</td>
<td>Still a draft (FDA 2004)</td>
</tr>
<tr>
<td>Virginiamycin (Vancomycin resistant Enterococcus faecium)</td>
<td>Remove 1.8 treatment failures over 5 year period if banned</td>
<td>(Cox and Popken 2004)</td>
</tr>
<tr>
<td>Penicillin growth promoter (Enterococcus faecium)</td>
<td>~4 in billion excess mortality</td>
<td>(Cox, Popken, and Mathers 2009)</td>
</tr>
</tbody>
</table>
Why take additional risk??

3. Alternative risks maybe higher?
Example from poultry

Modeling the relationship between food animal health and human foodborne illness

Randall S. Singer a,b,*, Louis A. Cox Jr. c, James S. Dickson d, H. Scott Hurd e, Ian Phillips f, Gay Y. Miller g
Ordinary differential equation for ill (Campy/Salm) humans from all sources and responsive to proportion of ill animals consumed

\[\frac{dI}{dt} = \left[c + d \times IA + e(1 - IA) \right] \times (1 - IH) - h \times IH \]

Diagram:

- **All ill humans with Campy/Salm. from all sources IH**
- **Illness from non food animal sources = c**
- **Illness from ill food animals = d*IA**
- **Illness from healthy food animals = e(1-IA)**
- **Recovery h*IH**

Equation:

\[D = \frac{d}{e} = \text{risk of a serving from an ill vs. healthy animal} = \text{POTENCY RATIO} \]
Assume: Illness duration = 2 days longer if resistant infection

\[ID_0 = RH_0 \cdot f \cdot h_r + (1 - (RH_0 \cdot f)) \cdot h_s, \]

RH0 is the fraction of human *Campylobacter* isolates that are resistant
f is the fraction of patients receiving similar antibiotic treatment
h_r and *h_s* are the durations of illness for resistant and susceptible
BASELINE SCENARIO

Ratio of resistant to nonresistant human infections and impact on total illness days (ID_0) due to food animal antibiotic use.
New SCENARIO
Increased total illness days (ID\textsubscript{new}) withOUT food animal antibiotic use → more “sick” birds more nonresistant human illness

Total illness days at baseline (ID\textsubscript{new})

Illness days per case (h\textsubscript{s})

Illness days per case (h\textsubscript{r})

Total illness days Nonresistant

Illness days

Treatment of ill humans (f)

Ill Humans with Nonresistant bacteria 1-RH\textsubscript{0}
Outcome measures of interest

- Percentage change in human illness days
 - \((\text{New Illness days} - \text{Old})/\text{Old illness days}\)
- Risk:benefit ratio:
 - Illness days caused per one illness day prevented
 - \([\text{Excess days}/[(\text{ID}_0 - \text{ID}_{\text{new}})\times(\text{Old illness days}/\text{ID}_0)]]\)
 - \(\text{ID} = \text{illness duration}\)
- Parameters used for chicken, Campylobacter and tylosin (antibiotic)
RESULTS

• As potency ratio (D) increases so does human illness, D is very uncertain
• Small increases in ill animals \(\rightarrow\) large increases in human illness days
• e.g. If \(IA_0 = 0.01\) \(\rightarrow\) \(IA_{new} = 0.02\) then human illness days increased 0.56% to 9.1% as D went from 2 to 20
Percentage change in human illness days for prevalence of animal illness (IA_{new}), relative to original prevalence ($IA_0=0.01$) over a range of potency ratios (D).
Results: increase in human campylobacteriosis

- e.g. 1% increase in the incidence of animal illness following the removal of tylosin from chickens is predicted to cause an additional 2.4 to 53.7 excess campylobacteriosis illness days for every illness day prevented due to decreased macrolide resistance.
- Translates to an annual increase in the incidence of campylobacteriosis ranging from 0.3 to 8.9%.
• “The public health risk of unhealthy animals is greater than antibiotic resistance concerns”
SYNOPSIS

Objective. This study measured the relationship between lesions suggestive of subclinical pig illness at harvest to carcass contamination and human foodborne risk.

Methods. Over the course of eight visits (December 2005 to January 2006), we swabbed 280 randomly selected carcasses, during normal slaughter operations, at three points in the slaughter line: skin pre-scald; the bung or pelvic cavity following removal of the distal colon and rectum; and pleural cavity, immediately before the final carcass rinse. Each swab sponge was used on five
Table 4. Regression coefficients (univariate and multivariate with antibiotic use group as a covariate) between percentage of representative health variables and percentage of carcasses positive for Enterococcus spp. or Campylobacter spp. in the bung or pleural cavitiesa,b

<table>
<thead>
<tr>
<th>Health indicator</th>
<th>Bacterial contamination</th>
<th>Location on carcass</th>
<th>Regression coefficient ((\beta)) (univariate)</th>
<th>95% CI</th>
<th>Regression coefficient ((\beta)) (multivariate)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatiguedc</td>
<td>Campylobacter</td>
<td>Bung</td>
<td>41.0</td>
<td>(219.0, 102.0)</td>
<td>10.0</td>
<td>(−50.0, 70.0)</td>
</tr>
<tr>
<td>Peel-outsd</td>
<td>Campylobacter</td>
<td>Pleura</td>
<td>5.7</td>
<td>(20.3, 11.7)</td>
<td>5.1</td>
<td>(0.4, 9.9)</td>
</tr>
<tr>
<td>Peel-outs</td>
<td>Enterococcus</td>
<td>Bung</td>
<td>5.1</td>
<td>(21.3, 11.5)</td>
<td>4.4</td>
<td>(1.3, 7.4)</td>
</tr>
<tr>
<td>Abscessed headse</td>
<td>Campylobacter</td>
<td>Pleura</td>
<td>−12.7</td>
<td>(231.0, 5.0)</td>
<td>−6.2</td>
<td>(−33.0, 21.0)</td>
</tr>
<tr>
<td>Abscessed heads</td>
<td>Enterococcus</td>
<td>Bung</td>
<td>−13.3</td>
<td>(231.0, 0.5)</td>
<td>−2.5</td>
<td>(−24.0, 19.0)</td>
</tr>
</tbody>
</table>

aAll health and contamination relationships were tested. Only those with \(p<0.2\) in the univariate comparison are shown.

bConventionally raised animals received antibiotics for growth promotion and disease prevention and treatment; antibiotic-free animals never received antibiotics.

cAnaerobic metabolism, respiratory distress, recurrent respiratory infections, signs of debilitation.

dPleuritis and pleural adhesions

eHeads condemned due to visible abscess(es)
Recent study
(in press Amer J. of Vet Med Research)

• 358 pork carcasses were selected
 – (four replicates)
 – Antibiotic free and conventional
• Lesioned and non-lesioned carcasses were identified, photographed and swabbed
• Individual carcass swabs cultured for *Salmonella*
• Logistic regression analysis showed the probability of *Salmonella* contamination in lesioned carcasses was 90% higher than in non-lesioned (Odds ratio = 1.9, 95% CI = 0.9-4.0)
Lesioned and non-lesioned swine carcass

Pathologist score ~ 6
90% more likely to be contaminated with Salmonella at end of slaughter

Pathologist score ~ 0 to 1
Summary

• 1. Concern about antimicrobial resistant bacteria is not equivalent to risk.
• 2. Estimated risk (farm-to-fork) of on-farm antibiotic use is extremely low.
• 3. Alternative risk of sub-optimal animal health may be higher than the risk of on-farm antibiotic use.
Guidelines for our Deliberations

• Is this a value-based point?
• Where does this fact fit into the causal pathway?
• What is the level of uncertainty about this fact?
• What are potential secondary or unintended consequence of an action