Antimicrobial Restrictions

Swine Industry Perspective

Harry Snelson, DVM
Director of Communications
AASV
Legislation vs. Regulation

- Legislation – law created by Congress
- Regulation – mechanism developed by government agency to implement the law
Legislation

• Federal Food, Drug, and Cosmetic Act
 – 1938
 – Authorizes FDA to oversee the safety of food, drugs and cosmetics

• Animal Medicinal Drug Use Clarification Act of 1994 (AMDUCA)
 – Allows vets to prescribe extra-label uses
Proposed legislation

• Preservation of Antibiotics for Medical Treatment Act (PAMTA – HR 965)
 – Referred to:
 • House Committee on Energy and Commerce
 • House Committee on Rules (Slaughter is ranking member)
 – Has not been referred out of committee
The purpose of this Act is to preserve the effectiveness of medically important antibiotics used in the treatment of human and animal diseases by reviewing the safety of certain antibiotics for nontherapeutic purposes in food-producing animals.
The term ‘critical antimicrobial animal drug’ means a drug that--

– ‘(1) is intended for use in food-producing animals; and

– ‘(2) is composed wholly or partly of--

 • ‘(A) any kind of penicillin, tetracycline, macrolide, lincosamide, streptogramin, aminoglycoside, or sulfonamide; or

 • ‘(B) any other drug or derivative of a drug that is used in humans or intended for use in humans to treat or prevent disease or infection caused by microorganisms.
Use Estimates of In-Feed Antimicrobials in Swine Production in the United States
Michael D. Apley, Eric J. Bush, Robert B. Morrison, Randall S. Singer, and Harry Snelson

Abstract
When considering the development of antimicrobial resistance in food animals, comparing gross use estimates of different antimicrobials is of little value due to differences in potencies, duration of activity, relative effect on target and commensal bacteria, and mechanisms of resistance. However, it may be valuable to understand quantities of different antimicrobials used in different ages of swine and for what applications. Therefore, the objective of this project was to construct an estimate of antimicrobial use through the feed in swine production in the United States. Estimates were based on data from the National Animal Health Monitoring System (NAHMS) Swine 2006 Study and from a 2009 survey of swine-exclusive practitioners. Inputs consisted of number of pigs in a production phase, feed intake per day, dose of the antimicrobial in the feed, and duration of administration. Calculations were performed for a total of 102 combinations of antimicrobials (n = 17), production phases (n = 2), and reasons for use (n = 3). Calculations were first conducted on farm-level data, and then extrapolated to the U.S. swine population. Among the nursery phase estimates, chlortetracycline had the largest estimate of use, followed by oxytetracycline and tilmicosin. In the grower/finisher phase, chlortetracycline also had the largest use estimate, followed by tylosin and oxytetracycline. As an annual industry estimate for all phases, chlortetracycline had the highest estimated use at 533,973 kg. The second and third highest estimates were tylosin and oxytetracycline with estimated annual uses of 165,803 kg and 154,956 kg, respectively. The estimates presented here were constructed to accurately reflect available data related to production practices, and to provide an example of a scientific approach to estimating use of compounds in production animals.
<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Growth Promotion</th>
<th>Prevention</th>
<th>Therapy</th>
<th>Any Reason 'Yearly Basis'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials or classes listed as Highly Important in Guidance 152 Appendix A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlortetracycline<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Chlortetracycline alone</td>
<td>83,331</td>
<td>206,076</td>
<td>217,622</td>
<td>507,029</td>
</tr>
<tr>
<td>as Chlortetracycline/Sulfathiazole/Penicillin G (CSP)</td>
<td>942</td>
<td>14,673</td>
<td>3,784</td>
<td>19,398</td>
</tr>
<tr>
<td>as Chlortetracycline/Sulfamethazine/Penicillin G (ASP)</td>
<td>2,735</td>
<td>3,663</td>
<td>1,148</td>
<td>7,546</td>
</tr>
<tr>
<td>Lincomycin<sup>3</sup></td>
<td>356</td>
<td>4,246</td>
<td>20,844</td>
<td>25,446</td>
</tr>
<tr>
<td>Neomycin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Neomycin/Oxytetracycline</td>
<td>4,068</td>
<td>2,632</td>
<td>16,394</td>
<td>23,094</td>
</tr>
<tr>
<td>Oxytetracycline<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Oxytetracycline alone</td>
<td>2,615</td>
<td>31,699</td>
<td>97,547</td>
<td>131,862</td>
</tr>
<tr>
<td>as Neomycin/Oxytetracycline</td>
<td>4,068</td>
<td>2,632</td>
<td>16,394</td>
<td>23,094</td>
</tr>
<tr>
<td>Penicillin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Chlortetracycline/Sulfathiazole/Penicillin G (CSP)</td>
<td>471</td>
<td>7,336</td>
<td>1,892</td>
<td>9,699</td>
</tr>
<tr>
<td>as Chlortetracycline/Sulfamethazine/Penicillin G (ASP)</td>
<td>1,367</td>
<td>1,832</td>
<td>574</td>
<td>3,773</td>
</tr>
<tr>
<td>Virginiamycin<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Virginiamycin alone</td>
<td>26,108</td>
<td>54,858</td>
<td>493</td>
<td>81,459</td>
</tr>
<tr>
<td>Antimicrobials or classes listed as Critically Important in Guidance 152 Appendix A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilmicosin<sup>5</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Tylosin alone</td>
<td>25,641</td>
<td>37,893</td>
<td>91,160</td>
<td>154,694</td>
</tr>
<tr>
<td>Tylosin<sup>5</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Tylosin alone</td>
<td>7,500</td>
<td>149</td>
<td>3,460</td>
<td>11,109</td>
</tr>
</tbody>
</table>

Apley, et al 2012
Nontherapeutic Use

• The term ‘nontherapeutic use’, with respect to a critical antimicrobial animal drug, means any use of the drug as a feed or water additive for an animal in the absence of any clinical sign of disease in the animal for growth promotion, feed efficiency, weight gain, routine disease prevention, or other routine purpose.’
Delivering Antibiotic Transparency in Animals (DATA) Act

• To be introduced by Rep. Henry Waxman
• Mandate FDA "improve" the data it collects on agricultural antibiotics use.
• Require feed mills to report what antibiotics it uses in its feeds, what the drugs are used for and whether it's growth promotion or disease control and prevention.
• Require drug manufacturers to report to the U.S. Food and Drug Administration (FDA) the type, purpose and quantities of antimicrobials used on farms.
DATA Concerns

• Sales data doesn’t correlate well with on-farm use
• Feed mills will not be able to readily provide info on how drugs are used
• Manufacturers will not be able to provide estimates of use based on species, indication or quantity
FDA Guidance 209/213

- FDA defines “production” uses (GP/FE) to be “injudicious”.
- Requires enhanced veterinary oversight in the use of feed-grade antimicrobials
- Basically a “voluntary” removal of GP claims for “medically important” antimicrobials within 3 years
 - Sponsors can migrate claims to specific indications if justified
- Eliminate OTC feed grade -> VFD
Can you regulate reductions?

BACON BOOST

Denmark’s actions to stop using antibiotics as growth promoters (AGP) in livestock has reduced antibiotic consumption but not pig production.

- No sales profit for vets. Avoparcin banned.
- Virginiamycin banned. No AGP in older pigs.
- 'Yellow card' scheme began.
- No AGP in piglets.

Milligrams antibiotic per kg meat produced

Millions of pigs produced

- Growth promotion
- Disease treatment
“The Yellow Card Initiative”

“The goal was to achieve a 10 % reduction on 2009 consumption levels as measured in kg by 2013. The yellow card initiative was – when instituted – also an incentive to help the pig producers to achieve this goal.”

The yellow card initiative: Each year, the DVFA will issue threshold limits for antimicrobial consumption in three age groups of pigs. The limits for 2010 were as follows:

1. Weaners (7–30 kg): 28 Animal Daily Doses (ADD) per 100 weaners per day
2. Young pigs, including young females (over 30 kg), excluding sows, gilts and boars: 8 ADD per 100 pigs per day
3. Sows, gilts and boars: 5.2 ADD per 100 pigs per day

If the average antimicrobial consumption in a holding within a nine-month period exceeds one or more of the above threshold limits, DVFA may issue an order or injunction (the yellow card) compelling the owner of the holding, in collaboration with the veterinary practitioner, to reduce the antimicrobial consumption in the holding below the threshold limits within nine months.

Danish Veterinary and Food Administration
Veterinary Feed Directive

• FDA recognizes changes are needed
• Likely revisions:
 – Written for up to 6 months for a production site (dose, duration, refills)
 – Approximate number animals treated, not tons of feed
 – Fax, email VFD forms – no originals required
 – Records retained for 12 months
 – Decoupled from VCPR
VCPR

• Codified in the CFR as a requirement for AMDUCA
• FDA wants to remove it from the VFD requirements
• AVMA has recently adopted some amended wording
• Appears in many state veterinary practice acts
What’s Driving Current Legislation/Regulation?

• The fear of resistance development in the human population
• Risk response disproportionate to the hazard
• Assessments often ignore the benefit side of the equation
A little science

• Guidance 152 called for evaluating risk to establish a “reasonable certainty of no harm” – NOT “no risk”

• Have to differentiate between “might” and “likely”

• A lot of steps between abtic use in livestock and increased human illness resulting from resistance
FDA RISK ASSESSMENT
- Assumes this causal pathway

- Antibiotic use
- Resistance develops on meat
- Pathogen on meat
- Human illness
- Antibiotic treatment

Additional illness days due to resistance

Hurd, 2010
Risk – Benefit

The Other Half of the Equation

• Peel out carcasses are 90% more likely to be contaminated with salmonella – Hurd

• Very minor changes in microbial load due to reduced poultry health could have relatively large impacts on human health. Singer et al. 2007

![Graph showing U.S. Foodborne Illness (per 100,000)]
Risk Assessments

• All scientific risk assessments conducted to date have shown the risk associated with antimicrobial use in livestock to be low to near zero.
Risk Assessment Results

<table>
<thead>
<tr>
<th>Risk (High to Low)</th>
<th>Yearly probability</th>
<th>Outcome measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin use in poultry to treat disease</td>
<td>1 in 30,000</td>
<td>Compromised treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By FDA, overestimated attributable fraction</td>
</tr>
<tr>
<td>Enrofloxacin use in poultry to treat disease</td>
<td>Removal is more hazardous to health</td>
<td>By Cox and Popken</td>
</tr>
<tr>
<td>All macrolide uses (cattle, swine, poultry)</td>
<td>1 in 10 million</td>
<td>Compromised treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*By Hurd et al., Alban in Denmark</td>
</tr>
<tr>
<td>Streptogramin/Virginiamycin use</td>
<td>~100 in 100 million</td>
<td>Impaired treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By FDA, still a draft</td>
</tr>
<tr>
<td>Penicillin growth promoter</td>
<td>~4 in billion</td>
<td>Excess mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cox and Popken</td>
</tr>
<tr>
<td>Baytril ® use in dairy heifers</td>
<td>~1 in 61 billion</td>
<td>Compromised treatment</td>
</tr>
</tbody>
</table>

Source: Dr. Scott Hurd
Put that in perspective...

- Chance of dying
 - Car crash
Put that in perspective...

• Chance of dying
 – Car crash – 1 in 6,700
Put that in perspective...

• Chance of dying
 – Car crash – 1 in 6,700
 – Commercial plane crash
Put that in perspective...

- Chance of dying
 - Car crash – 1 in 6,700
 - Commercial plane crash – 1.27 in 100,000 flight hours
Put that in perspective...

- Chance of dying
 - Car crash – 1 in 6,700
 - Commercial plane crash – 1.27 in 100,000 flight hours
 - Bicycling
Put that in perspective...

- Chance of dying
 - Car crash – 1 in 6,700
 - Commercial plane crash – 1.27 in 100,000 flight hours
 - Bicycling – 1 in 140,845
Put that in perspective...

- Chance of dying
 - Car crash – 1 in 6,700
 - Commercial plane crash – 1.27 in 100,000 flight hours
 - Bicycling – 1 in 140,845
 - Running
Put that in perspective...

• Chance of dying
 – Car crash – 1 in 6,700
 – Commercial plane crash – 1.27 in 100,000 flight hours
 – Bicycling – 1 in 140,845
 – Running – 1 in 1 million
Put that in perspective...

• Chance of dying
 – Car crash – 1 in 6,700
 – Commercial plane crash – 1.27 in 100,000 flight hours
 – Bicycling – 1 in 140,845
 – Running – 1 in 1 million
 – Dance party
Put that in perspective...

- Chance of dying
 - Car crash – 1 in 6,700
 - Commercial plane crash – 1.27 in 100,000 flight hours
 - Bicycling – 1 in 140,845
 - Running – 1 in 1 million
 - Dance party – 1 in 100 million
Put that in perspective...

Food Security in 2050

World population = **9 billion**

Requires **100%** more food

70% from **efficiency-improving** technologies
Put that in perspective...

1 in 6 people went hungry in 2010

FAO, 2010
Put that in perspective...

43% Live on less than $2USD

3 billion people

UNICEF, 2011
Put that in perspective...
Pork production efficiency (1959 – 2009)

- Water use reduced 41% per lb. carcass wt.
- Land use reduced 78% per 1,000 lbs. carcass wt.
- Carbon footprint reduced 35% per lb. carcass wt.
Economic Impact of AGP Loss

• Dermott Hayes and Helen Jensen examined results from Denmark and Swedish study
• Extrapolated findings to estimate economic impact on U.S. swine producers
Economic Assessment

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost/animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaning</td>
<td>$1.25</td>
</tr>
<tr>
<td>Finishing</td>
<td>$1.05</td>
</tr>
<tr>
<td>Veterinary cost</td>
<td>$0.25</td>
</tr>
<tr>
<td>Vaccine</td>
<td>$0.75</td>
</tr>
<tr>
<td>Sort loss</td>
<td>$0.65</td>
</tr>
<tr>
<td>Capital cost (increased post-weaning & sow space)</td>
<td>$0.55</td>
</tr>
<tr>
<td>Total cost per animal (first year)</td>
<td>$4.50</td>
</tr>
</tbody>
</table>

Hayes, 2003
Economic Assessment

- Total cost over 10 year period: >$700 million
- Increase cost to consumers: approx. 2% retail

Inc cost \rightarrow dec production \rightarrow fewer producers

Hayes, 2003
Science messages

• All scientific risk assessments published to date have shown a negligible risk to humans
• Failure to prevent or treat animal illness causes unnecessary suffering and death
• Animals with residual effects of illness are more likely to cause human foodborne illness
 – Peel out carcasses are 90% more likely to be contaminated with salmonella – Hurd
 – Very minor changes in microbial load due to reduced poultry health could have relatively large impacts on human health. Singer *et al.* 2007
Science messages

• Volume of use has no relevance to resistance development
 – Key focus should be bug/drug interaction
 – Then evaluating the chance that resistant bacteria somehow migrate from livestock to humans and result in elevated levels of illness
That’s dENDrogram