Animal Agriculture & Antibiotic Resistance
What should (& should not) be on the table

Brian Lubbers, DVM, PhD, DACVCP
Director, Clinical Microbiology
Kansas State Veterinary Diagnostic Laboratory
Key Resistance Issues at the Human–Animal Interface

Develop Specific Stewardship Guidelines

Antimicrobial – Bacteria Combinations
Understand the Risk – Benefit of Antimicrobial Use
Antimicrobial Resistance is ...

- A Phenomenon that is:
 - Real
 - Complex
 - Incompletely Understood

- A Bacterial Response Propagated by both Agricultural and Human Uses of Antimicrobials
Antimicrobial Use is ...

- A Risk – Reward Proposition

Clinical Outcome & Resistance Development Treatment Costs

IDSA – Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship
Resistance Issues to Leave “off the table”

- Growth Promotion / Feed Efficiency
- Environmental / Indirect Spread of Resistance
- International Spread of Resistance
What is the Human Perspective?

What are the Bacterial Diseases of Concern and Antimicrobials of Importance?

- CDC “Antibiotic Resistance Threats in the United States, 2013”
- WHO “Critically Important Antimicrobials for Human Medicine, 3rd Rev.” 2011
Population approach
 ◦ Estimated annual number of illnesses / deaths
 • Laboratory–based surveillance with extrapolation to entire US population
 • Underestimate of true disease prevalence
 ◦ Multiplied by average prevalence of resistance for that bacterial organism
 • NARMS
CDC
Antibiotic Resistance Threats in the United States

Based on:
- Clinical impact
- Economic impact
- Incidence
- 10-year projected incidence
- Transmissibility
- Availability of effective antibiotics
- Barriers to prevention

Threats classified as:
- Urgent
- Serious
- Concerning
CDC
Antibiotic Resistance Threats in the United States

- **Urgent Threats**
 - *Clostridium difficile*
 - Carbapenem–resistant Enterobacteriaceae
 - Drug–resistant *Neisseria gonorrhea*

- **Serious Threats**
 - Multidrug–resistant *Acinetobacter*
 - Drug–resistant *Campylobacter*
 - Fluconazole–resistant *Candida*
 - Extended spectrum β–lactamase producing Enterobacteriaceae (ESBL)
 - Vancomycin–resistant *Enterococcus*
 - Multidrug–resistant *Pseudomonas aeruginosa*
 - Drug–resistant non–typhoidal *Salmonella*
 - Drug–resistant *Salmonella typhi*
 - Drug–resistant *Shigella*
 - Methicillin–resistant *Staphylococcus aureus*
 - Drug–resistant *Streptococcus pneumoniae*
 - Drug–resistant tuberculosis

- **Concerning Threats**
 - Vancomycin–resistant *Staphylococcus aureus*
 - Erythromycin–resistant Group A *Streptococcus*
 - Clindamycin–resistant Group B *Streptococcus*
CDC
Antibiotic Resistance Threats in the United States

- Antimicrobial Use in Agriculture Specifically Discussed as a Risk Factor
 - Drug-resistant *Campylobacter*
 - Azithromycin
 - Ciprofloxacin
 - Drug-resistant non-typhoidal *Salmonella*
 - Ceftriaxone
 - Ciprofloxacin
 - Multidrug resistance
WHO
Critically Important Antimicrobials for Human Medicine

Prioritization within *Critically Important* Antibiotics

- Number of people affected by diseases to which the antimicrobial is the sole or one of limited therapies
- Frequency of use in human medicine for any indication
- Degree of confidence that there are non-human sources of resistant bacteria or their resistance genes
WHO
Critically Important Antimicrobials for Human Medicine

- Glycopeptides
 - Enterococci
- 3rd / 4th generation Cephalosporins
 - Enterobacteriaceae (*E. coli* and *Salmonella*)
- Fluoroquinolones
 - *Campylobacter* and Enterobacteriaceae (*E. coli* and *Salmonella*)
- Macrolides / Ketolides
 - *Campylobacter*
Human Perspective

Bacteria of Concern

- Campylobacter
- Enterobacteriaceae
 - *Salmonella*

Antimicrobials of Importance

- Macrolides
- Fluoroquinolones
- Cephalosporins
 - 3rd/4th gen
- Fluoroquinolones
What are the Bacterial Diseases of Concern and Antimicrobials of Importance?

- OIE “List of Antimicrobials of Veterinary Importance” 2007
- Animal Drugs @ FDA
- USDA – Industry Death loss summaries
OIE

Critically Important Veterinary Antimicrobials

- OIE Working Group on Antimicrobial Resistance and input from Member Countries

 A. Classification by majority (>50%) of respondents
 B. Agents essential against specific infections and lack of sufficient therapeutic alternatives

- Classification of Antimicrobials
 - Critically Important (both A & B)
 - Highly Important (A or B)
 - Important (neither A or B)
OIE
Critically Important Veterinary Antimicrobials

- Aminoglycosides
- Penicillins
- Phenicols
- Sulfonamides
- Tetracyclines
- Cephalosporins
 - Treatment of serious infections
 - Limited alternatives due to spectrum or resistance
- Macrolides
 - Few alternatives for swine / poultry *Mycoplasma* infections and liver abscesses in cattle
 - Treatment of respiratory infections in cattle
- Quinolones
 - Therapy of serious infections in poultry, cattle, swine, fish and other species
What are the Diseases of Concern in the US?

- **Respiratory Disease**
 - #1 cause of death in beef operations
 - #2 cause of death in dairy operations
 - #7 cause of death in sheep operations
 - #1 cause of death in swine nursery & grower operations

- **Digestive Diseases**
 - #4 cause of death in beef operations
 - #5 cause of death in dairy operations
 - #3 cause of death in sheep operations
 - #3 cause of death in pre-weaned swine
 - #4 cause of death in nursery swine

- **Other Diseases (includes mastitis, foot rot)**
 - #1 cause of death in dairy operations
 - #6 cause of death in beef operations
 - #6 cause of death in sheep operations

- USDA “Cattle and Calves Death Loss in the US”, 2000
- USDA “Sheep and Lamb Nonpredator Death Loss in the US”, 2009
- USDA “Reference of Swine Health, Productivity, and General Management in the US”, 2006
Macrolides / Lincosamides

- Bovine Respiratory Disease
- Swine Respiratory Disease
- Ovine Respiratory Disease
- *Mycoplasma gallisepticum* (chickens)
- *Haemophilus gallinarum* (chickens)
- Mastitis (cattle)
- Porcine Proliferative Enteritis (swine)
- Calf Diphtheria (cattle)
- Metritis (cattle)
- Swine Arthritis (*Mycoplasma* spp.)
- Swine Erysipelas
- Swine Dysentery
- Necrotic Enteritis (chickens)
- *Paenibacillus larvae* (honeybees)
- Liver Abscesses (cattle)
- Interdigital Necrobacillosis “Footrot” (cattle)
Fluoroquinolones

- Bovine Respiratory Disease
- Swine Respiratory Disease

- Federal law currently prohibits the extra-label use of fluoroquinolones in food animals
Interdigital Necrobacillosis “Footrot” (cattle)
Swine Respiratory Disease
E. coli colibacillosis (chicks / turkey poults)
Bovine Respiratory Disease
Sheep Respiratory Disease
Caprine (Goat) Respiratory Disease
Acute Metritis (cattle)
Mastitis (dairy cattle)

- Federal law currently limits the extra-label use of cephalosporins in food animals
Agricultural Perspective

Diseases of Concern
- Respiratory Disease
- Digestive Diseases
- Other Diseases (mastitis, foot rot)

Antimicrobials of Importance
- Macrolides
- Fluoroquinolones
- Cephalosporins
 - 3rd generation
- Cephalosporins
- Macrolides
- Macrolides
- Cephalosporins
Understanding the Risks & Benefits of Antimicrobial Use in Agriculture
What are the Risks of Agricultural Use of Antimicrobials?

- Contribute to Bacterial Resistance in Human Medicine (annual estimates in US)
 - Drug Resistant *Campylobacter*
 - 310,000 illnesses / 28 deaths
 - Drug Resistant non-typhoidal *Salmonella*
 - 100,000 illnesses / 40 deaths
What are the Risks of Agricultural Use of Antimicrobials?

- Contribute to Bacterial Resistance in Veterinary Medicine
 - Since 2011, >60% of *Mannheimia haemolytica* isolates recovered at KSVDL have been MDR
What are the **Benefits** of Agricultural Use of Antimicrobials?

- Improved Animal Health
What are the Benefits of Agricultural Use of Antimicrobials?

- Improved Food Safety
 - *Campylobacter* counts were higher on processed chickens with air sacculitis infections
 • Russell (2003)
 - *Enterococcus* and *Campylobacter* contamination of processed swine carcasses was associated with presence of pleural adhesions
 • Hurd (2008)
What are the Benefits of Agricultural Use of Antimicrobials?

- Economic
 - Direct benefit to farmer through decreased animal loss
 - National economic benefit
 - Agriculture / agriculture-related industries contributed $775 billion to the 2012 US economy (~5% GDP)

What are the **Benefits** of Agricultural Use of Antimicrobials?

- **Economic**
 - Direct benefit to consumer through decreased food prices
 - 6.8% of US consumer expenditures was on food [2012]
 - World AVG – 23% (6.7%–57%) million households

[Graph showing prevalence of food insecurity from 2000 to 2013]

Note: Food-insecure households include those with low food security and very low food security.
The Path Forward

- [For this group] focus on the antimicrobials of critical importance to human and veterinary medicine
 - Dynamic situation

- Understand the risks / benefits of antimicrobial use

- Design Stewardship programs that are:
 - Specific
 - Practical
 - Measureable
Questions?