Emergence of Influenza A in Agricultural Fairs

Andrew S. Bowman, MS, DVM, PhD, DACVPM

The Ohio State University
Background

- Pigs play a critical role in the ecology and epidemiology of influenza A viruses infecting humans.

- Interspecies transmission received considerable publicity following the emergence of the influenza A (H1N1)pdm09 virus.

Solid lines between species: Confirmed inter-species transmission
Solid lines within species: Intra-species maintenance cycle
Dotted lines between species: Suspected interspecies transmission
Changes in Nomenclature

Swine Influenza Virus
• Influenza A Virus in Swine (IAV-S)

Pandemic influenza A (H1N1) 2009 virus
• Influenza A (H1N1)pdm09

Animal-origin influenza viruses identified in humans
• “Variant” denoted with a “v”
Agricultural Fairs

Unique swine-human interface

- Non-commercial swine (youth education programs)
- Multi-source pigs
- High people:pig ratio (~150 million people)
- Pigs and people comingled for a prolonged period of time
Public Health Importance

306 documented human cases of H3N2v across 10 states during the summer of 2012

107 cases of H3N2v in Ohio
• 11 hospitalizations and one fatality

Majority of the cases had prolonged direct or indirect exposure to swine (exhibitors or their family members)

Linked to 14 of Ohio’s agricultural fairs
7 participating in surveillance project

Jhung et al., Clin Infect Dis. 2013 Dec;57(12):1703-12
Sampling Methods

Weights
Entry
4-36 hours

Shows
Exhibition Period
3-10 days

Sale
Departure
4-36 hours
2016 H3N2v

Outbreak of Influenza A(H3N2) Variant Virus Infections Among Persons Attending Agricultural Fairs Housing Infected Swine — Michigan and Ohio, July–August 2016

Rebekah S. Schicker, MSN, MPH1,2; John Rossow2,3; Seth Eckel, MPH4; Nicolas Fisher5; Sally Bidol, MPH6; Lilith Tatham, DVM5; Janice Matthews-Greer, PhD4; Kevin Sohner, PhD3; Andrew S. Bowman, DVM, PhD6; James Auvil, DVM, PhD7; Tony Forshey, DVM8; Lenee Blanton, MPH2; C. Todd Davis, PhD2; John Schiltz, DVM9; Susan Skorupski, DVM10; LaShondra Berman, PhD2; Yunho Jang, PhD2; Joseph S. Bresee, MD2; Stephen Lindstrom, PhD2; Susan C. Trock, DVM2; David Wentworth, PhD2; Alicia M. Fry, MD2; Sietske de Fijter, MS3; Kimberly Signs, DVM4; Mary DiOrio, MD3; Sonja J. Olsen, PhD2; Matthew Biggerstaff, MPH2
Agricultural Fairs

Agricultural fairs have been held in the U.S. since 1811

• Family events
• Celebration of agricultural heritage and achievement
• Agricultural education
Percent of fairs/exhibitions ≥ 1 pig IAV positive

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>20.0% (3/15)</td>
<td>18.8% (3/16)</td>
<td>27.3 % (6/22)</td>
<td>25% (10/40)</td>
</tr>
</tbody>
</table>

Percent of sampled pigs testing IAV positive (all fairs)

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.4% (40/299)</td>
<td>10.8% (34/315)</td>
<td>17.7 % (81/459)</td>
<td>19.3% (161/834)</td>
</tr>
</tbody>
</table>

Percent of sampled pigs testing IAV positive (positive fairs)

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.7% (40/55)</td>
<td>56.7% (34/60)</td>
<td>57.8 % (81/140)</td>
<td>68.8% (161/234)</td>
</tr>
</tbody>
</table>
Policy Working Group

- American Association of Swine Veterinarians
- Centers for Disease Control and Prevention
- Council for State and Territorial Epidemiologists
- International Association of Fairs and Exhibitions
- Minnesota Center for Influenza Research and Surveillance
- National Assembly of State Animal Health Officials
- National Association of State Public Health Veterinarians
- National Pork Board
- National Swine Registry
- USDA, APHIS, VS
- USDA, NIFA, Youth & 4-H

Measures to Minimize Influenza Transmission at Swine Exhibitions, 2013

It is estimated that 150 million people visit agricultural fairs each year in North America. Agricultural exhibitions provide valuable educational venues for the public. Equally important, the exhibition of swine is an important learning opportunity for thousands of youth exhibitors, 4-H and FFA members across the United States. Showing swine for these youth at their county or state fair is the culmination of many months of work dedicated to the care and training of their animal.

Pigs can be infected with human, swine and avian origin influenza A viruses. While rare, influenza A viruses can spread from pigs to people and from people to pigs, but it usually requires close contact between pigs and people. This has happened in different settings, including agricultural fairs. When people are infected with swine origin influenza A viruses, it is termed as a variant virus infection and denoted with a “V” after the subtype (e.g. H1N2v). In the past 5 years, cases of influenza A H1N2v, H1N2v and H3N2v have been associated with swine exhibitions. In 2011 there were 12 cases of H1N2v reported from 5 states. In 2012 there were a total of 309 cases of H3N2v identified in 12 states. The majority of cases reported exposure to pigs prior to onset of illness and were exhibitors and others in close contact with pigs at agricultural fairs. Sixteen of these individuals were hospitalized and one death was reported. Eleven of the 16 hospitalized cases, as well as the person who died, were people considered to be at high-risk for complications from influenza infections. People at high-risk include children younger than 5 years of age, people 65 years of age and older, pregnant women and people with certain long-term health conditions (like asthma, diabetes, heart disease, chronic respiratory disease, weakened immune systems, and neurological or neurodevelopmental conditions.)

These cases led to the formation of the Swine Exhibitions Zoonotic Influenza Working Group that has developed a set of measures to minimize influenza virus transmission between swine, from people to swine, and from swine to people at swine exhibitions. Influenza viruses are unpredictable and their impact and circulation can vary by year. It may not be possible to prevent all transmission of influenza viruses at swine exhibitions. The measures described here are offered for careful consideration depending on the needs of the specific exhibition and can be implemented in part or in total. They are not intended to supersede federal, state, or local regulations. These measures were formulated based on current evidence and the collective knowledge of the Swine Exhibitions Zoonotic Influenza Working Group. It is expected that this document will be updated regularly as additional information becomes available.

The suggested measures have been organized to address activities before, during, and after swine exhibitions. Measures are further divided into actions that may minimize risk to swine and risk to humans, although there is significant overlap between these two groups.
What are “exhibition swine”?

- Swine that are shown for evaluation of the animal or the handler.
- Swine can be shown at multiple times, across multiple locations, in exhibitions open to any age competitor. Examples: 4-H and FFA projects

<table>
<thead>
<tr>
<th></th>
<th>Exhibition Swine</th>
<th>Commercial Swine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of industry</td>
<td>1 million</td>
<td>66 million</td>
</tr>
<tr>
<td>Humans that are exposed</td>
<td>Naïve (?)</td>
<td>Continually exposed</td>
</tr>
<tr>
<td>Size of farm</td>
<td>Small (?)</td>
<td>$\bar{x} = 1,044$ head</td>
</tr>
<tr>
<td>Biosecurity plan</td>
<td>(?)</td>
<td>Yes</td>
</tr>
<tr>
<td>Population integrity</td>
<td>Low, multiple exhibitions (?)</td>
<td>High</td>
</tr>
</tbody>
</table>

Geographic distribution of influenza A(H3N2) variant virus cases, by county, United States, July–September 2012, and number of pigs by county (2007).

Jhung et al., Clin Infect Dis. 2013;57:1703-1712
Determine the geographical distribution of exhibition swine

- Six states participated: Illinois, Indiana, Iowa, Michigan, Missouri, and Ohio.
- Fair organizers and state animal health officials reported total number of exhibition swine attending fairs on a county basis during 2013.
- The reported swine per county were interpolated to the geometric centroid of each county.
- A continuous spatial distribution developed using inverse distance weighting based on 15 neighbors.
Total swine inventory

Exhibition swine per county fair

Bliss et al., JAVMA. In press
PB2

Key
- commercial/non-H3-G1
- commercial/H3-G1
- exhibition/non-H3-G1
- exhibition/H3-G1

Nelson et al., JID, 2015
Conclusions

• Frequent introduction of IAVs from commercial swine populations.
 • Extent of viral exchange between commercial and exhibition swine was unexpected

• Reassortment between viruses co-circulating in exhibition swine further increases viral diversity.

• Exchange of viruses between exhibition swine in Indiana and Ohio.
Percent of fairs/exhibitions \geq 1 pig IAV positive

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>20.00%</td>
<td>18.80%</td>
<td>27.30%</td>
<td>25%</td>
<td>36.10%</td>
<td>18.20%</td>
<td>5.00%</td>
<td>23.40%</td>
</tr>
<tr>
<td>Indiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.60%</td>
<td>63.60%</td>
<td>27.00%</td>
<td>42.10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15/36)</td>
<td>(14/22)</td>
<td>(10/37%)</td>
<td>(16/38)</td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00%</td>
<td>21.40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0/14)</td>
<td>(3/14)</td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.30%</td>
<td>6.30%</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1/7)</td>
<td>(1/16)</td>
<td>(0/10)</td>
<td>(1/1)</td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2/9)</td>
</tr>
<tr>
<td>Colorado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0/10)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>(0/1)</td>
<td>(0/1)</td>
<td>(0/1)</td>
<td>(0/1)</td>
<td>(0/1)</td>
<td>(0/1)</td>
<td>(0/1)</td>
<td>(0/1)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1/1 (100%)</td>
<td>0% (0/1)</td>
<td>1/1 (100%)</td>
<td>100% (2/2)</td>
<td>100% (2/2)</td>
<td>100% (2/2)</td>
<td>100% (2/2)</td>
<td>100% (2/2)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20.00%</td>
<td>18.80%</td>
<td>27.30%</td>
<td>26.80%</td>
<td>31.00%</td>
<td>30.10%</td>
<td>13.50%</td>
<td>32.70%</td>
</tr>
<tr>
<td></td>
<td>(3/15)</td>
<td>(3/16)</td>
<td>(6/22)</td>
<td>(11/41)</td>
<td>(31/100)</td>
<td>(22/73)</td>
<td>(14/104)</td>
<td>(33/101)</td>
</tr>
</tbody>
</table>
Objectives
Objectives

1. Determine the prevalence of influenza A virus in exhibition swine during arrival at agricultural fairs.

2. Characterize the on-farm management practice used for exhibition swine and identify where exhibition swine are located geographically.
 A. Determine the risk factors associated with bringing a swine infected with influenza to a fair.
• During 2014, nine agricultural exhibitions (Exhibitions A-I) located in Indiana and Ohio were enrolled.

• Exhibition swine entering the fair were sampled during the first time they could be uniquely identified by ear tag.
Objective 1: Methods

Snout wipes collected

Samples placed in viral transport media and frozen

Sample RNA screened via rRT-PCR for influenza A virus

rRT-PCR positive (Ct ≤ 35) samples inoculated for virus isolation on MDCK cells
<table>
<thead>
<tr>
<th>Exhibition</th>
<th>Location</th>
<th>No. of swine</th>
<th>No. of swine tested</th>
<th>No. (%) rRT-PCR positive</th>
<th>No. (%) Virus Isolation positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Trailer</td>
<td>2,149</td>
<td>382</td>
<td>21 (5.50%)</td>
<td>6 (1.57%)</td>
</tr>
<tr>
<td>B</td>
<td>Chute</td>
<td>424</td>
<td>419</td>
<td>144 (34.37%)</td>
<td>43 (10.26%)</td>
</tr>
<tr>
<td>C</td>
<td>Chute</td>
<td>377</td>
<td>359</td>
<td>16 (4.45%)</td>
<td>1 (0.28%)</td>
</tr>
<tr>
<td>D</td>
<td>Pen</td>
<td>465</td>
<td>445</td>
<td>6 (1.35%)</td>
<td>2 (0.45%)</td>
</tr>
<tr>
<td>E</td>
<td>Pen</td>
<td>523</td>
<td>523</td>
<td>1 (0.19%)</td>
<td>1 (0.19%)</td>
</tr>
<tr>
<td>F</td>
<td>Chute</td>
<td>367</td>
<td>367</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>Chute</td>
<td>274</td>
<td>274</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>Chute</td>
<td>597</td>
<td>492</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>Chute</td>
<td>286</td>
<td>286</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total

5,462 swine were exhibited, 3,547 were tested, 188 were rRT-PCR positive (5.30%), and 53 were virus isolation positive (1.49%).
Exhibition B:

- Sampled in chute
- rRT-PCR positive: 144
- Isolates recovered: 43

Key:
- ● H1N1
- ○ H3N2
- ★ H1H3 N1N2
Exhibition E:

- Pigs sampled in pen prior to weigh-in.
- rRT-PCR positive: 1
- Isolates recovered: 1

Key:
- ● H1N1
- ○ H3N2
- ★ H1H3 N1N2
Conclusions

• The frequency of influenza virus isolation was low among arriving swine.

• Exhibition swine movement and corralling activities are likely to enhance pathogen transmission during exhibitions.

• Focus should be placed on mitigating influenza A virus spread during swine exhibitions rather than attempting to completely preclude entry of the influenza A virus infected swine.
Survey of on-farm practices

- A 24 question survey was administered to the adults accompanying the swine exhibitors at the fairs.
- 480 surveys were collected, over the nine exhibitions with 5,462 swine.
 - 52 of the surveys dropped from study
- Surveys were associated with swine sampled upon entry.
 - Surveys that were not associated with individual pigs were used for descriptive data.
Descriptive data findings: swine herd

- Most survey participants reported not having swine year round.
- Obtained swine from an off-farm source (75.4%).
 - Most sales occurring between March and April (84.3%).
- Exhibition swine were raised in small herds (median, 6; range 1-6500).
- The same location as other livestock (66.5%).
 - Cattle (53.5%)
 - Poultry (32.6%)
 - Goats (32.4%)
 - Horses (27.3%)
 - Sheep (24.8%)
 - Other (llamas, buffalo, rabbits, etc.) (11.7%)
Descriptive data findings: movement

- Participants reported showing swine at an average 3.38 exhibitions during 2014.
 - (median 2; range 0-50)
- Brought swine back to the farm from an average from 2.88 exhibitions.
 - (median 2; range 0-40)
- Number of exhibitions attended by an individual pig averaged 2.19.
 - (median 1; range 0-30)
- Average travel time from loading to exhibition for these pigs was 3.20 hours.
 - (median 2 hours; range 5 minutes – 24 hours)
Exhibition swine management

- Half of the premises (48.6%) implemented some form of isolation for returning swine.

- Contact with swine or the environment of swine, other than their own, occurred at least once a week at 45.2% of the premise of the participant.

- Commercial swine production was reported at 13.3% of the premises as where the exhibition swine were raised.
<table>
<thead>
<tr>
<th>Event</th>
<th>Odds Ratio</th>
<th>P value</th>
<th>95% confidence interval</th>
<th>Number of rRT-PCR events</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one swine testing IAV positive via rRT-PCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of swine on premise January 1st, 2014</td>
<td>0.999</td>
<td>0.936</td>
<td>0.996 – 1.001</td>
<td>11</td>
</tr>
<tr>
<td>No. of swine on premise the day prior to attending exhibition</td>
<td>0.999</td>
<td>0.976</td>
<td>0.993 – 1.001</td>
<td>15</td>
</tr>
<tr>
<td>Maximum no. of swine on premises in 2014</td>
<td>1.000</td>
<td>0.789</td>
<td>0.998 – 1.068</td>
<td>15</td>
</tr>
<tr>
<td>No. of exhibitions attended by swine from premise in 2014</td>
<td>0.952</td>
<td>0.651</td>
<td>0.775 – 1.068</td>
<td>15</td>
</tr>
<tr>
<td>No. of exhibitions that swine returned to premise in 2014</td>
<td>1.053</td>
<td>0.234</td>
<td>0.956 – 1.142</td>
<td>14</td>
</tr>
<tr>
<td>Open houses/sales hosted on premise were people would come into contact with swine</td>
<td>3.933</td>
<td>0.035</td>
<td>1.097 – 13.064</td>
<td>6</td>
</tr>
<tr>
<td>New swine were directly mixed into existing herd on premise</td>
<td>2.131</td>
<td>0.266</td>
<td>0.603 – 6.966</td>
<td>15</td>
</tr>
<tr>
<td>Swine were obtained from an off-farm source</td>
<td>0.457</td>
<td>0.247</td>
<td>0.140 – 2.100</td>
<td>15</td>
</tr>
<tr>
<td>Distance from premise to closest commercial farm</td>
<td>0.948</td>
<td>0.682</td>
<td>0.751 – 1.201</td>
<td>15</td>
</tr>
<tr>
<td>Other livestock were raised on same premise as swine</td>
<td>0.627</td>
<td>0.562</td>
<td>0.185 – 2.255</td>
<td>6</td>
</tr>
<tr>
<td>The total time, in minutes, swine were on trailer during transportation to exhibition</td>
<td>1.001</td>
<td>0.153</td>
<td>0.999 – 1.003</td>
<td>15</td>
</tr>
<tr>
<td>No. of exhibitions attended by individual swine in 2014</td>
<td>0.943</td>
<td>0.635</td>
<td>0.748 – 1.092</td>
<td>21</td>
</tr>
<tr>
<td>No. of exhibitions that was planned to be attended by individual swine after current exhibition</td>
<td>0.858</td>
<td>0.794</td>
<td>0.387 – 1.333</td>
<td>9</td>
</tr>
<tr>
<td>Individual swine was reported as receiving a vaccination to influenza</td>
<td>2.828</td>
<td>0.143</td>
<td>0.773 – 15.606</td>
<td>3</td>
</tr>
</tbody>
</table>
Conclusion

• The exhibition swine industry is composed of a diverse mixture of farm types and management practice differed from commercial swine production.

• There exists an interaction between commercial and exhibition swine industries. Although this is still poorly defined, this helps us to understand the viral gene flow between these two swine populations.
Shorten swine exhibitions

“Shorten the total time pigs are on the exhibition grounds, ideally exhibition swine should be on the exhibition grounds no more than 72 hours.”

-Measures to Minimize Influenza Transmission at Swine Exhibitions

Objective:

• Validate the recommendation of limiting swine exhibitions to 72 hours to prevent zoonotic transmission of IAV-S.
Results

• 6,810 pigs sampled
• 948 (13.9%) were detected as positive during the course of study.
• IAV was detected in the pigs at 7 (44%) of the 16 fairs
 • Sustained IAV transmission at 5 of the 7

• Within those 5 events, the proportion of pigs testing positive for IAV at the conclusion of fairs was 49%.
• If the exhibitions had ended at 72 hours, the proportion of positive pigs would have been <18%.
National Pork Board requested a study to characterize influenza dynamics in exhibitors and/or their pigs through the show pig/exhibitor lifecycle
PROJECT OBJECTIVES

1. Estimate influenza A virus prevalence in exhibition swine at jackpot shows.

2. Describe geographic movement of exhibition swine for competition.

3. Evaluate influenza A virus evolution and transmission in exhibition swine.
2016 Ohio Summer Show Circuit

Overall average distance
51.6 miles

Overall influenza A virus prevalence
144 out of 1,229 (11.7%)
H1N2 and H3N2
Spring 2016
Summary

• Exhibition swine are a small population relative to the commercial swine industry
 • Unique management practices
 • Unique exposure to humans and other pigs

• Largely unstudied interface between commercial and exhibition swine is important

• Decreased number of variant cases after 2012 is not due to decreased IAV activity in exhibition swine
 • IAV continues to circulate in the exhibition swine
 • Reassortment continues to occur
 • Subclinical IAV infections remain common

• Not all fairs have the same risk
Acknowledgements

AIEERP team
Jacqueline Nolting
Jody Edwards
Alexa Edmunson
Elise Gerken
Christina Gould
Jessica Higgins
Amber Kihm
Teresa Mills
Sarah Nelson
Grant Price
Christine Szablewski
Dr. Jeffrey Workman
Dr. Richard Slemons
Michele Zentkovich

Collaborators
Martha Nelson
Mary Lea Killan
Srinand Sreevatsan
Suman Das
Dave Wentworth
Karla Stucker
Seth Schobel
Sue Trock
Carol Cardona
Jeff Bender
Mike Osterholm

Funding
National Pork Checkoff
Council of State and Territorial Epidemiologists
Centers for Disease Control & Prevention
St. Jude Center of Excellence for Influenza Research and Surveillance
THE OHIO STATE UNIVERSITY

Andrew S. Bowman, MS, DVM, PhD, DACVPM
Assistant Professor

College of Veterinary Medicine
Department of Veterinary Preventive Medicine
A100B Sisson Hall, 1920 Coffey Road
Columbus, OH 43210

614-292-6923 Office 614-292-6616 Lab
bowman.214@osu.edu go.osu.edu/vetfluresearch