How does the science of antibiotic resistance and use get applied in veterinary and farming practices?

H. Morgan Scott DVM, PhD
Professor, Pathobiology
Texas A&M University
hmscott@cvm.tamu.edu

- **Objective 1:** Improve awareness and understanding of antimicrobial resistance through effective communication, education and training

- **Objective 2:** Strengthen the knowledge and evidence base through surveillance and research

- **Objective 3:** Reduce the incidence of infection through effective sanitation, hygiene and infection prevention measures

- **Objective 4:** Optimize the use of antimicrobial medicines in human and animal health

- **Objective 5:** Develop the economic case for sustainable investment that takes account of the needs of all countries, and increase investment in new medicines, diagnostic tools, vaccines and other interventions

http://www.who.int/drugresistance/global_action_plan/en
National Action Plan: USA

The goals of the National Action Plan include:

1. Slow the Emergence of Resistant Bacteria and Prevent the Spread of Resistant Infections.

The key dilemma...

• “The bacterial problem has no technical solution; it requires a fundamental extension in morality”

 – One sentence abstract
 • Science, December 13, 1968
 • Cited 34,641 times as of October 1

www.garretthardinsociety.org
...a fundamental extension of morality...

• "To preserve the effectiveness [of antibiotics], we simply must use them as judiciously as possible"

• “Preserving antimicrobial effectiveness in the future through ethical practices today”

#209

Guidance for Industry

The Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals
Antibiotic stewardship: clinical (human) medicine

• IDSA: “…antimicrobial stewards seek to achieve optimal clinical outcomes related to antimicrobial use, minimize …adverse events, reduce the costs of health care for infections, and limit the selection for antimicrobial resistant strains.”

Photo credits: CDC and MS Clip Art
Stewardship in veterinary medicine and production agriculture

• **Target bacterial pathogens**
 - Bovine respiratory disease complex
 - *Mannheimia haemolytica*, *Pasteurella multocida*, *Histophilus somnus*

• **Non-target bacterial pathogens and commensals**
 - Enteric bacteria
 - *Salmonella*, *E. coli*, *Campylobacter*
Which antibiogram should motivate cattle stewardship framework?

*No ceftiofur resistance reported among these isolates (KSVDL data)

Ceftiofur resistance prevalent among cattle Salmonella isolates (USDA-ARS data)
Stewardship in veterinary medicine and production agriculture?

Figure 2: Release assessment schematic: avoiding release of resistance from the farm
Stewardship in veterinary medicine and production agriculture?

Figure 3(a): Treatment of single dairy cow 2-dose CCFA
Effects of CCFA treatment on CFU of E. coli (2-dose dairy cow)
Plain versus ceftiofur (8 ug/ml) MacConkey Agar

Figure 3(b): Metaphylaxis pen of steers 1-dose CCFA
Effects of CCFA treatment on CFU of E. coli (1-dose beef steer)
Plain versus ceftiofur (8 ug/ml) MacConkey agar

Data courtesy: Norby, Loneragan, Scott, Halbert
DPSIR Framework (after EEA)

POLICY FORUM

Antimicrobial resistance: The complex challenge of measurement to inform policy and the public

Didier Wernli1*, Peter S. Jørgensen2,3, Stephan Harbarth4,5, Scott P. Carroll6,7, Ramanan Laxminarayan8,9, Nicolas Levrat1,10, John-Arne Røttingen11,12, Didier Pittet4,5

1 Global Studies Institute, University of Geneva, Geneva, Switzerland, 2 Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Sweden, 3 Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden, 4 Infection Control Program, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland, 5 WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland, 6 Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America, 7 Institute for Contemporary Evolution, Davis, California, United States of America, 8 Princeton Environmental Institute, Princeton, New Jersey, United States of America, 9 Center for Disease Dynamics, Economics & Policy, Washington, DC, United States of America, 10 Faculty of Law, University of Geneva, Geneva, Switzerland, 11 Department of Global Health & Population, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America, 12 Norwegian Institute of Public Health and University of Oslo, Oslo, Norway

* didier.wernli@unige.ch